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S O L U T I O N  O F  T H E  C O N T A C T  P R O B L E M  F O R  A P I N - L O A D E D  P L A T E  

V. N. Solodovnikov  UDC 539.3.01 

We solve the problem of tension of an elastic rectangular plate with a circular hole in which, with a 
small clearance, an absolutely rigid immovable pin of circular cross section is inserted without  friction. The 
finite-element method is used, and two variants of boundary conditions are imposed on the hole contour F. 

In one variant, the boundary conditions are formulated for projections of displacements and forces 
onto the normal and the  tangent to F. In contrast to [1], the possibility of violation of the condition of 
impenetration of the hole edge into the pin contour is excluded. The  other variant of boundary conditions 
is obtained by linearizing the impenetrat ion condition. This condition was formulated in [2] in terms of the 
Cartesian displacement components,  but its geometrical sense was not explained. Nor was the form of the 
boundary conditions adopted for forces presented. In [3], a similar problem was solved for the case of the 
absence of a gap. 

In the algorithm developed below, we assume, as in [2-4], that  the contact region occupies one segment 
of length l on F. The region can depend on the load, the gap, and on the adopted variant of boundary 
conditions. The plate is loaded by the displacement v of its r ight-hand side. The  value of v corresponding to 
the length I is determined in accordance with the Boussinesq principle [2-6] from the requirement of a zero 
normal force at the ext reme point of the contact region. A solution of the contact problem is sought in this 
case (differently than in [2-4]) as a sum of solutions of the other two problems that  are independent  of v and 
whose coefficients are linear in v. 

The finite-element solutions are analyzed. In the first variant, the solution is linear with the gap c, 
while in the second variant, for each new value of c the problem should be solved again. The  form of the 
solutions is found under  unlimited growth of v. The maximum possible length of the contact region l = l. is 
determined. 

The difference between the solutions calculated for the same displacement v but  for different variants 
of boundary conditions is slight. However, the second variant yields a more precise solution in the sense that  it 
yields a smaller strain energy of the plate, maximum stresses, and length of the contact region. To obtain the 
same displacement v, one should apply a lesser total tensile force P .  In the second variant, with the growth 
of c the maximum length l = l. decreases almost as a linear function of c. In the first variant, the length is 
constant, and its value is the  same as in the case of absence of a gap. 

1. Bas ic  E q u a t i o n s .  Expressions of strains in terms of displacements, relations of Hooke's law, and 
the equilibrium equations in a plane stressed state in the Cartesian system of coordinates zl  and z2 are used 
in the form [7] 

e l l  = Ul,1,  e22 ---~ u2,2, 2e12 ~-~ 721,2 + u2,1, e l l  ---- E - l ( o . l l  - b'o.22), 
(1.1) 

e2; -- B - l ( a 2 ~  - vo .n ) ,  el2 = (1 + v ) E - l o . 1 2 ,  o'11,1 + o'12,2 = 0, o'12,1 + o'22,2 = 0. 

Here E is Young's modulus ,  v is Poisson's ratio, ui are the displacements, eii are the strains, o'ii are the 
stresses (i, j = 1, 2), and the subscripts 1 and 2 after the commas denote the partial differentiation with 
respect to xl and x2, respectively. 
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The strain energy is determined by the formula 

[ 
E [e21 + 2velle22 + e222 + 2(1 - v)e~2 ] dzldz2.  (1.2) = / - 

2(1 //2) . /  

fl 

The plate thickness is assumed to be constant and, without loss of generality, to be equal to unity. Integration 
is performed over the region fl occupied by the plate. 

2. B o u n d a r y  C o n d i t i o n s .  There is a rectangular plate with a noncentral circular hole of radius R. Its 
half is shown at the left of Fig. 1. The left-hand side of the plate Xl = -L 1  is not loaded, while its right-hand 
side zl = L2 shifts without deformation in the direction of the zl axis for Ul = v. Specifying the symmetry 
conditions for the solution with x2 = 0 and z2 = + H ,  we have 

0"11 ---- O"12 = 0 for Xl = --L1, 0 <~ x2 ~< H, 
U 1 : V, U 2 : 0 for Xl = L2, 0 ~< x2 <~ H, (2.1) 
t t  2 = 0 ,  O"12 : 0 for z2 = H, - L 1  ~< zl ~< L2 and 

for m s = 0 ,  - L I ~ z l  ~ < - R ,  R~<Zl~<L2 .  

An absolutely rigid immovable pin of circular cross section with radius R1 = R -  c and center at a point 
with Cartesian coordinates ( - c ,  0) is inserted without friction in the hole with a small clearance (c = r 
where r is a small dimensionless parameter and e > 0). We also use the polar system of coordinates r, ~ in 
which Zl = r cos ~ and z2 = r sin ~. At any point of the hole contour F, the relations 

cos0 ---- p - l ( ~  .jr coscp), sin0 = p-1 sin~p, p = (1 + e 2 + 2ecos~)  1/2 (2.2) 

are satisfied, where 0 is the angle between the normal to the pin contour at the point that  is the closest to the 
point under consideration on r and the zl axis. The projections of the displacement and force vectors onto 
the normal and the tangent to the pin contour Up, uo, qp, and q# are expressed in terms of the displacement 
(u~ and u~,) and stress (art ,  a~,~, and ar~,) components in the polar coordinate system by the formulas 

up = ur cos cr - u~, sin ~, u0 = ur sin a + u~, cos a,  
(2.3) 

qp = o'rr cos ~ - -  O ' r~  sin ~, q# = ~r~ sin ~ + ~rr~ cos ~, ~ = ~ - 0. 

The condition of impenetration of the hole edge through the pin contour is represented as 

(Rcos  ~ + c +  Ul )  2 -I- (Rsin ~ + u2)  2 = (fl R .3 t- Up) 2 .-~ u 2 

= ( a  + ccos~  + ur) 2 + (u~ - csin r 2 >/R~ = (1 - ~)2R2 (2.4) 

or  u# + (2pR)- l (u  2 + u 2) >1 U#c, u.c = - c p - ' ( 1  + cos~).  (2.5) 

Linearizing the left-hand part of the latter inequality, we obtain 

u .  i> u.~. (2.6) 

The absolute value of U#c is smaller than the distance from the point under consideration on F to the pin 
contour by a small quantity of the order of c 2. Inequality (2.6) is more rigorous than (2.5). This means that 
displacements that satisfy (2.6) satisfy (2.5) as well. 
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In view of the absence of friction, the work of forces for any admissible variations in displacements 6ur 
and 6u~ or 6up and 6u0 on F should be zero: 

arr6Ur + ar~6u~ = qpt~U o + qohuo = 0. (2.7) 

In the contact region F1, the displacement is up = upc. The hole edge is pressed against the pin and, therefore, 
qp < 0. For 6up = 0 and arbitrary 6u0, from (2.7) it follows that q0 = 0. On the remaining free part of the 
hole edge F2, we have art  = ar~, = 0 or, which is equivalent, qp = q0 = 0. We obtain the following boundary 
conditions on F = F1 U F2: 

u p = u p c ,  q a = 0 ,  q p < 0  on F1, q p = q o = O ,  up >lupc on F2. (2.8) 

The regions I"1 and 1"2 are found from the solution of the problem. 
If the expressions for up, upc, qp, and q0 from (2.3) and (2.5) are substituted into (2.8), then with 

allowance for (2.2), the radical p is excluded from (2.8), and e is included in the expressions for the coefficients 
of ur, u~, a t , ,  and a ~ .  Therefore, the solution obtained using (2.8) can depend nonlinearly on e. 

We now formulate another variant of boundary conditions on F with specification of the projections of 
displacements and forces onto the normal and the tangent to I'. Impenetration condition (2.4) is not violated 
for any value of the hoop displacement u~ if 

ur >>, urr ure = - c ( 1  + c o s ~ ) .  (2.9) 

The absolute value of urc is smaller than the distance along the hole radius from the point under consideration 
on F to the pin contour by a small quantity of the order of c 2. Inequality (2.9) is more rigorous than (2.4). 

In the contact region F1, which here can differ from that in (2.8), ur = U,.c and a ~  < 0. With 
6u,. = 0 and arbitrary 6u~, from (2.7), it follows that o,~ = 0. On the free part of the hole edge F2, we have 
cry, = ar~ = 0. We obtain the boundary conditions 

u,-=u,.c,  c r r~=0 ,  crrr < 0  on F1, a r r = c r r ~ o = 0 ,  ur>tUrc on F2. (2.10) 

The regions r l  and F2 are determined from the solution of the problem. In this case, the quantities v and c 
enter the right-hand sides of (2.1) and (2.10) in a linear manner. 

Thus, we have two contact problems: (1.1), (2.1), and (2.8) and (1.1), (2.1), and (2.10), each having a 
unique solution. As a functional of displacements that satisfy the boundary conditions for displacements in 
(2.1) and the inequality ur /> u,.c or up >1 upc in the case of using (2.8) on F, the strain energy �9 reaches a 
minimum on the solution of problems (1.1), (2.I), and (2.10) and (1.1), (2.1), and (2.8), respectively. 

In the absence of a gap (c = 0), the following boundary conditions [3] follow from both (2.8) and (2.10): 

ur = 0, ar~ = 0, ~rrr < 0 on r l ,  Orr = ar~ = 0, Ur /> 0 on F2, (2.11) 

where F1 and F~ are not dependent on the displacement v. 
3. D e t e r m i n a t i o n  of  t h e  C o n t a c t  Reg ion .  It is assumed that in any problem the contact region 

F1 occupies a certain section 0 <~ r/<~ I (77 = 1 - ~o/lr). Its dimensionless length I can depend on the gap c, 
displacement v, and the adopted variant of boundary conditions (2.8), (2.10), or (2.11). 

In the algorithm developed below, the value of I is given. On F, we set the boundary conditions obtained 
from (2.8) or (2.10) by eliminating the restrictions formulated in terms of the inequalities 

u r = u r e ,  a ~ = 0  for 0~<r/~<l, a r r = ~ ' r ~ = 0  for l < r / ~ < l  (3.1) 

o r  
u p = u p e ,  qa=O for 0~<y~<l ,  q p = q a = O  for l < r / ~ < l .  (3.2) 

The equilibrium states of the plate with a given contact region are determined from the solution of 
problems (1.1), (2.1), and (3.1) and (1.1), (2.1), and (3.2) [called below problems (a) and (b), respectively]. 

We also define problems (al) ,  (a2) and (bl), (b2). Their only difference from (a) and (b) is that in the 
boundary conditions for the contact region 0 <~ 77 ~< I we specify ur = 0 in (al) ,  ur = c-lu~r in (a2), up = 0 in 
(bl), and up = c-lupe in (b2), while on the right-hand side of the plate (xl = L2 and 0 ~< x2 ~< H) we assume 
ul = 1 in (al)  and (bl) and ul = 0 in (a2) and (b2). 
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4. Applicat ion of  the F i n i t e - E l e m e n t  M e t h o d .  The plate is split into Lagrangian finite elements 
(quadrangular, nine-node, and isoparametric) [8], as is shown, for example, at the right of Fig. 1. In 
approaching the hole edge and the extreme point of the contact region r /=  l, which is regarded as a boundary 
node between the elements, the elements become smaller. In each mesh, there are 90 finite elements and about 
730 unknown variables (displacement components of the nodes of the elements). 

Based on the principle of minimum strain energy (1.2), we formulate the finite-element equations for 
problems (a) and (b). Subst i tut ing the corresponding values of displacements at the nodes of the elements on 
the plate contour into these equations, we obtain the finite-element equations for problems (al) ,  (a2), (bl), 
and (b2). To calculate integrals over the element area, the three-point quadrature Gauss formula is used. Each 
system of finite-element equations is solved using the method of compact Gauss exclusion with allowance for 
the symmetry and band character of the coefficient matrix,  i.e., the global rigidity matr ix  [8, 9]. The stresses 
are calculated at the integration points over the element area and interpolated at the nodes of the elements. 
The small stress discontinuities at the boundaries between the elements in the figures are smoothed.  

Below, we give a finite-element solution of the above problems. 
5. S o l u t i o n  of  C o n t a c t  P r o b l e m s .  Let us first describe the solution of the contact  problems with 

boundary conditions (2.10). Problem (a) has a solution which is linear in v and c: 

U (~) = vU (~1) + cU (~2). (5.1) 

Hereafter U are the global vectors of the desired variables (displacement components  of the nodes of the 
elements), and the superscript in the parentheses corresponds to the problem from which the marked quantity 

is taken. 
The vectors U (aD and U (a2) are not dependent on v and c and are found from the solution of the systems 

of finite element equations of problems (al)  and (a2) which have the same coefficient matrix,  namely, the 
global rigidity matrix. It is calculated and reduced to the triangular form only once for both systems. 

At the point 77 = l for O'rr/, which are the limiting values for the radial stresses ar t  on F from the side 

of r/ < l, from (5.1) it follows that  ~(a) (al) (a2) Urr ~ = Varr t + cart t . According to the Boussinesq principle [5, 6], we 

assume that  ~(a) = 0. Define a displacement v = v (a) that  realizes the given contact region: t~' r l -  / 

v(, ) (,~2), (~) (5.2) = - - C ~ T r r  I ]O'rr I �9 

~(~2) 
On the basis of the calculation results, we assume that  ~'rr/ > 0. Solving problems (al)  for various l by 

iterations, l of which are similar to those in [3], we obtain a value of I = l(. a) such tha t  a t ,  t = 0. If I < l! a), 
(al) (al) then a~,~ < 0 and if I > l(. a), then arrt > 0. By virtue of (5.2) and the aforesaid, v (a) < 0 when I > I! a). 

Therefore, the contact-region length l cannot exceed 1! a) and approaches l!a) as v -- v (a) increases infinitely. 

The maximum length I! ~) remains the same for any c. 
For c --- 0, l -- I! a), and arbitrary v, the solution of contact problem (1.1), (2.1), and (2.11) obtained 

from (5.1) is U (~ -- vU (~1). The contact-region length l! a) in this problem is not dependent  on v. 
Substituting v -- v (a) with nonzero c from (5.2) into (5.1), we obtain U (a) as a solution of contact 

problem (1.1), (2.1), and (2.10). It is linear with c. The restrictions in the form of inequalities in (2.10) are 

satisfied. The vector U (a) as v -- v (~) -~ oo and I ~ l! a) approaches a linear function of v of the form of vU (al) 
and almost coincides with U (~ at sufficiently great v. 

Let us turn to the case of boundary conditions (2.8). A solution of problem (b) is sought in the form 

U (b) = vU (bl) + cU (b2), (5.3) 

where the vectors U (hi) and U (b2) depend on c but are not dependent on v. They are calculated by solving 
the systems of finite-element equations of problems (bl) and (b2) which have the same coefficient matrix, 
namely the global rigidity matrix,  which is c-dependent.  With each new value of c, in contrast to the case 
with boundary conditions (2.10), problems (bl) and (b2) and the contact problem as a whole are solved anew. 

At the point r / =  l, for qpt (the limiting values of the normal forces qp on F from the side of r/ < l), 
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from (5.3) it follows that  n(b) (bz) (b2) "lpl - -  vq  M Jr c%l �9 On the basis of the Boussinesq principle satisfying the equality 

q(b) = 0, we determine a displacement v = v(b) that  realizes the given contact region: pl 

V(b) (b2). (bl) (5.4) 
=--Cqpl /qpl " 

Then, by analogy with the previous solution (5.1) and (5.2), on the basis of the calculation results, we 
~(b2) 

assume that  ~pl > 0. Solving problems (bl) for various l, by iterations we find a value of I, I = I(. b), at which 

q(bD ,(bz) I(, b), then ~(bZ) p~ = 0. If l < l (b), then ~pl < 0, while if I > %~ > 0. For v (b) to be nonnegative, it is required 

that  l < l! b). We have I ~ l! b) as v = v(b) grows unlimitedly. The maximum length of 1! b) depends on ~. 
Substi tut ing v = v(a) from (5.4) into (5.3), we obtain U (b), which is a solution of contact problem 

(1.1), (2.1), and (2.8). The  restrictions in the form of inequalities in (2.8) are satisfied. As v = v (b) --+ oo and 

l --+ l! b), the vector U (b) approaches a linear function of v of the form vU (bz) which depends on e. 
As ~ decreases, with the same fixed value of 1, problems (bl) and (b2) approach problems (al) and 

(a2), and the differences between U (hi), U (b2), v(b), and U (b) and, hence, U (=z), U (a2), v(a), and U (~) tend to 

zero. Moreover, l! b) ~ l(, ~) as ~ --+ O. 
6. A n a l y s i s  o f  C a l c u l a t i o n  R e s u l t s .  Let us pass over to nondimensional quantities. For this purpose, 

we multiply R, LI, L2, H,  xz, and z2 by the nondimensionalizing multiplier R -z ,  the displacement and the 
gap c by Lo 1, the strains by r = R L ~  1, the stresses by wE -1, and the strain energy @ by E - I L o  2 (Lo is a 
constant with the dimension of length ). For nondimensional quantities, we retain the previous notation, and 
now R = 1, H = Lz = 2.5, L2 = 5, and c = r162 The Poisson's ratio is v = 0.3. 

Let us consider the solution U (al) of contact problem (1.1), (2.1), and (2.11) in the case without  a gap 

for v = 1 and l = l! a) = 0.462769 (which corresponds to the angle ~rl equal to 83.3~ Separation of the plate 
into finite elements and its deformed state are shown in Fig. 1. The  Cartesian coordinates of the nodes Xi 
in a deformed state (at the right of Fig. 1) are determined from the initial values of zi and displacements ui 
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TABLE l 'k. 
0.461 ~ Problem 1 P ~ a~(max} A 

(0) 0.462769 0.3112 0.2085 0.5620 0.0003436 

0.45] ~ (a) 0.25 0.2502 0.1563 0.5296 0.0006551 

0 . 4 4 L /  , . . (b) 0.242728 0.5168 0.0001671 
0 0.02 0.04 

Fig. 6 

using the formulas X~ = x~ + ")'ui (i = 1, 2) (for brevity, hereafter the index of a problem is omitted from 
the notation of the quantities obtained from its solution). The multiplier 3' > 0 is the same for all ui and 
is such that the maximum absolute value of the components of the vector 3' U (al) equals 1. Transition to 
the dimensionless quantities of displacements and their multiplication by 3' leads to exaggerated strains of 
the plate. It should also be noted that, in view of linearization of the problem, the section of the hole edge 
presented as a plate-pin contact region does not lay directly on the pin contour. 

The stresses on the hole contour as a function of r /are plotted in Fig. 2. The hoop stress a ~ ,  is tensile, 
and the distribution of the radial stress art  is nonsinusoidal, with art = 0 for l ~< r/ ~ 1. The minimum 
~rrr = -0.2686 is attained at the internal point of the contact region, while the maximum a~o = a ~  = 0.4189 

1 * is attained on the free part of F near the point 7/= I. The coefficient of stress concentration is k = H P -  a~o ~ = 
4.514. The tensile force 

H 

P = /o'11dx2 for xl = L2, 
0 

which is calculated using the quadrature parabola formula [10], is equal to 0.232. 
The solution U (a) of contact problem (1.1), (2.1), (2.10) is obtained for l = 0.15, 0.2, 0.25, 0.3, 0.35, 

0.4, 0.425, and 0.45 and c = we = 1. It is applicable for any not too large gap given by e. As v grows, the 

solid curve of I in Fig. 3 vs. v = v (a) approaches the dashed curve on which l = l! a). 
On the whole, the stress distribution in the plate for l > 0.25 is similar to that  given above in the 

solution of U (al) for the case without a gap; only the position of the point r / =  l changes. With l ~< 0.25, in 
the vicinity of the point ( - R ,  0) at the hole edge and near it there is a small region in which ar~ is small in 
absolute value, and O'rr < 0 and a~o < 0. 

Figures 4 and 5 show the distribution of the stresses crr~ and a ~  and the displacements ur and u~, 
on F for l = 0.15 and v = v (a) = 0.4993. The minimum art  is at the point r/ = 0. In most of the contact 
region, cr~ < 0, a ~  < 0 and u~ > 0. As l and v increase, the section on F with positive hoop displacements 
disappears. 

Let us now compare U (a) with the solution U (b) of problem (1.1), (2.1), and (2.8). As ~ increases, the 

maximum length of the contact region l! b) decreases almost linearly with respect to e (Fig. 6). The decrease 

in l! b) is small compared with l! a) and for e = 0.05, it is about 3%. 
The relative values of the differences between U (a} and U (b) are of the same order of smallness for 

= 0.05 and equal displacements v = v (~) = v (b). The above characteristic properties of U (a) are also retained 

by U (b). The dependence of I on v = v (b) is presented in Fig. 3 by a dot-and-dashed curve for I! b) -" 0.448351. 
In comparison with (2.10), the variant of boundary conditions (2.8) is less restrictive for the plate. With 

the same displacement v, it gives rise to smaller values of the strain energy, maximum stresses, contact-region 
length, and force P. The distance from the deformed edge of the hole to the pin contour is determined in 
dimensionless quantities by the formula 

A = [(1 + r cos ~ + w-lug) 2 + ( - r  sin ~ + (a3-1u~)  2 ]1/2 _ (1 - g ) .  

In the problems considered, on the contact section/k is not strictly equal to zero, but it is smaller in problem 
(b) than in problem (a). Table 1 presents the values o f /k  at the points 7/= l, the maximum values of hoop 
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stresses a ~  on F denoted by tr~(max), the values of 1, P, and �9 in the solutions U Ca) and U (b) for e = 0.05, 

and also in the solution U (~ = vU (al) [problem (0) in Table 1], with v = v (a) = v (b) = 1.341. 
Having compared U (a), U (b), and U (~ under equal displacements v, we note the following. As l grows, 

the difference in U (a) and U (b) can become arbitrarily large because of the unbounded growth of U (a) and 
U (b) and different l! a) and l(. b). 
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